Systematic evaluation of fluorescence correlation spectroscopy data analysis on the nanosecond time scale.

نویسندگان

  • Katrin Steger
  • Stefan Bollmann
  • Frank Noé
  • Sören Doose
چکیده

Signal fluctuations in a fluorescence time trace on nanosecond time scales can be induced by specific quenching interactions that report on the dynamics of biomolecules. Fluorescence correlation spectroscopy is an analysis tool to investigate dynamic processes on time scales from pico- to milliseconds or longer. Under certain conditions, e.g. in a solvent of high viscosity, a fluorescence labeled dynamic biomolecule yields multiple independent correlation decays due to rotational and translational diffusion, fluorescence quenching interactions, and fluorophore photophysics. We compared parameter estimation for FCS data with multiple correlation decays by dynamical fingerprint analysis and by the non-linear Levenberg-Marquardt fitting procedure and identified conditions for which dynamical fingerprint analysis can be of advantage. In this context we identified a previously unrecognized photophysical process in ATTO655 that introduces fluorescence intermittency on nanosecond time scales that is absent in MR121. The optimized fitting procedure is used to resolve the viscosity dependence of fluorescence quenching for photoinduced electron transfer probes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing Brownian Rotational Motion by Fluorescence Correlation Spectroscopy in the Nanosecond Time Range

By monitoring the Brownian motion of a fluorescent biomolecule of interest in free solution, information regarding its hydrodynamic volume as well as its solvent properties (i.e. viscosity) is obtained. While the translational diffusion of a fluorescent biomolecule, typically occurring on the microto millisecond time scale, is conveniently obtained from a conventional fluorescence correlation s...

متن کامل

Electronically excited states of DNA oligonucleotides with disordered base sequences studied by fluorescence spectroscopy.

DNA double-stranded oligomers are studied by steady-state and time-resolved fluorescence spectroscopy from the femtosecond to the nanosecond time-scale, following excitation at 267 nm. It is shown that emission arises from three types of excited states. (i) Bright ππ* states emitting around 330 nm and decaying on the sub-picosecond time-scale with an average lifetime of ca. 0.4 ps and a quantum...

متن کامل

Filtered FCS: Species Auto- and Cross-Correlation Functions Highlight Binding and Dynamics in Biomolecules**

An analysis method of lifetime, polarization and spectrally filtered fluorescence correlation spectroscopy, referred to as filtered FCS (fFCS), is introduced. It uses, but is not limited to, multiparameter fluorescence detection to differentiate between molecular species with respect to their fluorescence lifetime, polarization and spectral information. Like the recently introduced fluorescence...

متن کامل

Large-scale rotational motions of proteins detected by electron paramagnetic resonance and fluorescence.

Direct spectroscopic measurements of rotational motions of proteins and large protein segments are crucial to understanding the molecular dynamics of protein function. Fluorescent probes and spin labels attached to proteins have proved to be powerful tools in the study of large-scale protein motions. Fluorescence depolarization and conventional electron paramagnetic resonance (EPR) are applicab...

متن کامل

Time-resolved fluorescence spectroscopy for illuminating complex systems

Over the years, the emissive characteristics (spectral, temporal, and polarization) of fluorophores have been widely used to probe a wide variety of systems. Fluorescence lifetime and rotational reorientation time measurements, in particular, offer a means to elucidate key details about complex systems. Further, because fluorescence occurs on the nanosecond (10−9 s) timescale, competing or pert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 15 25  شماره 

صفحات  -

تاریخ انتشار 2013